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Abstract Optimization problems constrained by complex dynamics canlead to computationally challenging problems
especially when high accuracy and efficiency are required. We present an approach to adaptively control numerical
errors in optimization problems approximated using the finite element method. The discrete adjoint equation serves as
a key tool to efficiently compute both parameter sensitivities and goal-oriented error estimates at the same discretized
levels. By using a recovery method for the error estimators,we avoid expensive higher order adjoint calculations. We
nest the adaptivity of the mesh within the optimization algorithm, which is responsible for converging both the state
and optimization algorithms and thereby allowing the reuseof state, parameters, and reduced Hessian in subsequent
optimization iterations. Our approach is demonstrated on aparameter estimation problem for contamination transport
in a contact tank reactor. Significant efficiency and accuracy improvements are realized in comparison to uniform grid
refinement strategies and black-box optimization methods.A flexible and maintainable software interface was developed
to provide access between the underlying linear algebra of aproduction simulator and advanced numerical algorithms
such as optimization and error estimation.

Keywords optimization, PDE constrained optimization, error estimation, adjoint, adaptivity, parameter estimation,
contact tank reactor

1 INTRODUCTION

One of the key goals of numerical simulation is to approximate complex physics as accurately as possible while main-
taining computational efficiency. This can be achieved through the advancement of numerical methods such as linear
solvers, nonlinear solvers, time integrators, preconditioners, and parallelization. More fundamentally however, the ac-
curacy of numerical simulation is strongly dependent on theappropriate use of discretization techniques and mesh
refinement which almost always accomplishes higher levels of solution accuracy. But simply refining meshes becomes
computationally expensive, especially if multiple forward simulations are required as part of more detailed optimization
studies. Therefore to maintain computational tractability, one can only afford to sparingly refine the grid, preferably in
a way that is guided by the dynamics of the problem. This can beaccomplished mathematically using the adjoint for-
mulation, which encompasses the necessary information to drive both the optimization and grid refinement problems.
Despite many technical advancements, several important technical issues remain when coupling optimization and adap-
tivity, consisting of the computational expensive nature of calculating an additional adjoint on higher order meshes,the
lack of established algorithms to calculate error estimation within an optimization context, and the challenges associated
with software implementation of intrusive algorithms in production simulation codes. In this paper we address these is-
sues by 1) demonstrating recovery methods applied to adjoint based error estimators as an inexpensive alternative to
higher order adjoint solutions, 2) reusing Hessian, state and optimization variables after each adaption cycle, 3) lever-
aging embedded optimization methods to efficiently combineadaptivity and optimization algorithms, and 4) enabling a
generalized interface to mitigate the complexities of interfacing advanced numerical algorithms into production codes.

Significant research has been conducted in the area of a posteriori error estimation for finite element discretiza-
tions, especially for engineering responses of interest, such as surface fluxes, average values on subdomains or sur-
faces, and point values. The underlying tool in nearly all ofthese approaches, beginning with the work of Becker
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and Rannacher [Becker and Rannacher(1996)], is tocomputationallymake use of an auxiliary linear adjoint prob-
lem. Weighting the local finite element residuals with the adjoint error yields both global error estimates on the er-
ror in the responses of interest and local error indicators that can be used to drive adaptive mesh refinement. This ap-
proach was subsequently pursued for linear elliptic problems [Paraschivoiu et al(1997)Paraschivoiu, Peraire, and Patera,
Prudhomme and Oden(1999)], optimization [Becker and Kapp(1998),Becker et al(2000)Becker, Kapp, and Rannacher,
Bangerth(2008)], and more general nonlinear systems of PDEs [Estep et al(2000)Estep, Larson, and Williams]. Recent
reviews of adjoint-based error estimation can be found in [Giles and Süli(2002),Bangerth and Rannacher(2003)]. One
of the main research issues is how to reduce the high computational cost of approximating the adjoint solve with a
higher order method, while still preserving sufficient accuracy in the error estimators. We present a new approximation
approach for the adjoint solve using recovery methods that is very computationaly efficient when compared to solving
the adjoint using a higher order method.

Optimization techniques have been studied for several decades and more recently, efficient large scale algorithms
have demonstrated impressive computational performance [Akçelik et al(2005)Akçelik, Biros, Drăgănescu, Ghattas, Hill, and van Bloemen Waanders
The use of these algorithms require access to the linear algebra infrastructure of the simulator which typically is not read-
ily available, especially in production codes. Different levels of interfaces can be considered and the choice dependson
a balance of implementation effort versus desired performance. For the most efficient algorithm, first and second order
sensitivity information need to be provided to the optimization algorithm to realize potentially quadratic convergence
rates, whereas at the opposite end of the spectrum the optimizer calculates the objective function gradient through finite
difference techniques requiring very little from the simulator (merely forward simulations) but at a significant perfor-
mance cost. In this paper, we show performance comparisons for different interface strategies from the “black box” to
the “simultaneous analysis and design” (SAND) approach (a.k.a. all-at-once approach). It is the SAND strategy how-
ever that not only significantly improves the computationalefficiency but also provides the algorithmic flexibility to
accomodate adaptivity within the optimization algorithm.

Progress on algorithms for large scale optimization with adaptivity in parallel environments has been hampered by
the complexity associated with the implementation process. As one of the few research efforts, Bangerth [Bangerth(2008)]
demonstrates large scale optimization algorithms withh-adaptivity applied to inversion in 3D optical tomography.How-
ever, his finite element environment was appropriately designed from the outset to accommodate adaptivity and access
to the linear algebra infrastructure. Such capabilities are typically not available in existing legacy production codes.
Short of completely refactoring, the algorithms in Bangerth’s work cannot be conveniently encapsulated and efficiently
transferred to production codes. As part of this research, one of our goals was to create a general interface so that ex-
isting optimization libraries and adaptivity capabilities can be seamlessly used by any simulation code that adopted the
interface. However, just creating an interface for optimization and adaptivity is still not sufficient to ensure the longevity
of such an interface. The primary code developers are typically focussed on the enhancement of the forward prediction
mode and not on the maintenance of interfaces for optimization or error estimation. A general interface must therefore
also appeal to other nonlinear numerical algorithms (such as time integrators and nonlinear solvers) that are in direct
support of the forward prediction. Our interface is designed to accomplish this and although a detailed description of the
object oriented design of our interface is beyond the scope of this paper, the importance of these implementation issues
warrants the inclusion of a brief description of our design.

In the remainder of the paper we present the algorithms to perform optimization and discuss different implementation
strategies. A performance comparison is presented using flow and transport datasets. The practical difficulties associated
with the theoretical error for the optimality conditions are discussed and the dual-weighted residual approach is justified.
Our adaptive process makes use of the adjoints in a recovery method to augment the solution field with higher order
information. This approach is verified by comparing it to an analytic solution for convection-diffusion dynamics. A
description of our implementation approach is included to emphasize the intrusive nature of the implementation and
the added complications of attempting this in multiple codes and production systems. After the verification section,
the physics of our example dataset are explained followed bynumerical results for both two and three dimensions. We
summarize the effectiveness of adaptivity in the optimization context in addition to showing the performance gains for
our embedded optimization and adaptivity methods which areboth supported by a single adjoint calculation on the
same discrete space. Numerical studies were performed in serial and parallel for two and three dimensional datasets,
respectively.

2 OPTIMIZATION METHODOLOGIES

We start by defining our algorithms to solve large scale optimization problems and by identifying appropriate solution
strategies that are extensible to leverage adaptivity. Suppose that the forward model is described using a semilinear
variational statement: given a value of the parameterp ∈ Π, find the solutionu = u(p) ∈ V :
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A(u, p)(v) = 0, v ∈ V. (1)

where the exact form of the funcational spacesV andA are problem dependent. The parameterp can also belong to
a function space; here, for simplicity we assume that the parameter space is finite dimensional, orp ∈ Π ≡ R

n.
In order to define the optimization problem, we need a cost functional F that depends on the solutionu and the

parametersp. The goal of the optimization problem is to find(u∗, p∗):

F (u∗, p∗) = min
u,p

F (u, p) (2)

subject to the constraint in (1). A classical way to solve this problem is to introduce a Lagrange multiplier field,φ,
also known as the adjoint state, and form a Lagrangian functionalL that combines the objective function with the state
equation:

L(u, p, φ) ≡ F (u, p) + A(u, p)(φ). (3)

The stationarity ofL is derived by taking variations with respect to the adjoint (φ), state (u), and optimization pa-
rameter (p). The following system of equations represent the first-order necessary conditions for optimality (suppressing
the dependence on(u, p) for clarity in our notation):
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This system of equations is typically nonlinear and therefore requires a linearization step, which can be achieved
through Newton’s method. This system of equations for the Newton updates is called the Karush-Kuhn-Tucker (KKT)
system:
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whereLuu is the Hessian operator of the Lagrangian with respect to theu variable. Different algorithms can solve these
optimality conditions and the right choice depends on several issues, most importantly on the size of the optimization
space, complexity of the constraints, and the affordability of the implementation effort. The most difficult one to imple-
ment is afull spacemethod in which (5) is solved directly. The most notable obstacles are the need for second derivatives
and special preconditioning [Biros and Ghattas(2005a),Biros and Ghattas(2005b)]. Neither requirement is tractablein
most production codes. An approximation to the Hessian could be considered such as BFGS or SR1 updating methods
[Nocedal and Wright(2000)], which simplifies the requirements considerably. A popular alternative is to eliminate state
and adjoint variables, thereby reducing the system to a manageable one in just the inversion parameters. Approaches of
this type are known asreduced spacemethods.

Several important variants of reduced space methods can be considered. A nonlinear elimination variant of a reduced
space method would solve the nonlinear state equation (1) for givenp for the state variableu. Knowing the state then
permits solution of the adjoint equation for the adjoint variableφ. Finally, with the state and adjoint known, the parameter
p is updated via an appropriate linearization of the optimization equation. This loop is repeated until convergence. As
an alternative to such nonlinear elimination, one often prefers to follow the Newton strategy offirst linearizing the
optimality system, andtheneliminating the state and adjoint updates via block elimination on the linearized state and
adjoint equations. The resulting Schur complement operator is known as thereduced Hessian, and the equation to
which it corresponds can be solved to yield the parameter update. After applying appropriate discretizations, the above
described methods require access to the linear algebra in addition to the optimization algorithm directly communicating
with the simulator. In this paper, we have adopted the Newtonstrategy which exposes a variety of linear objects to
the optimization/adaptivity algorithm. In particular, wereuse the reduced Hessian after adapting the mesh and realize
significant performance improvements (see Section 6).

To accommodate optimization algorithms as part of a simulation code can be a challenging undertaking. A range of
non-standard linear algebra objects are needed including objective functions, inequality constraints, sensitivityinforma-
tion and a mechanism for the optimization algorithm to control the iterative loop. A decoupled approach is therefore a
convenient initial approach to making use of optimization.This often referred to as theblack boxinterface and requires
very little information from the underlying simulator. Some basic data needs to be exchanged between optimization
and simulator (usually through the file system) such as the objective function value, changes to the design parameters
and globalization data. The gradient of the objective function is calculated through finite differences across the entire
simulator and although very expensive computationally formany design variables, the interface is trivial. The original
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optimization problem (2) is reformulated by eliminating the state variable and constraints as an unconstrained optimiza-
tion problem:

F (u(p)∗, p∗) = min
p

F (u(p), p) (6)

A logical improvement over theblack boxapproach is to substitute direct or adjoint based sensitivities for the finite
difference calculations. It is different from the intrusive approach described above in that there is still no direct interface
and therefore the simulator is converged at each optimization iterations. In the numerical results section, we presenta
performance comparison for the black box with finite difference, black box with adjoints, and a reduced space approach.
Unfortunately, the decoupled algorithms do not lend themselves to efficient use of adaptivity. As the optimization al-
gorithm steers the simulator to convergence there is no direct interface to communicate adjoints or any other objects
between optimizer and forward simulator. A fully coupled approach on the other hand provides the necessary conduits
between the forward simulator and optimization algorithm to exchange adjoints, Hessians, objective function, and any
other pertinent information. Before outlining our algorithmic strategy, the error estimates for the KKT system (4) and
the approximation approaches are explained.

3 OPTIMIZATION AND ERROR ESTIMATION

Our goal of the adaptive error control is to minimize the error in the objective functionF (u, p) using an adjoint equation
which is identical to the second equation in (4) used in optimization. Below we present an approach for using the same
discrete adjoint to drive both algorithms. However, the adjoint for optimization is solved in the same functional space
as the forward problem and by finite element orthogonality, the resulting weighted residual calculation for the error
estimate would be zero. This then suggests a need for duplicate adjoint calculations, each in different functional spaces,
which is unfortunately computationally expensive. Our formulation proposes a recovery method whereby higher order
information is extracted from an adjoint solution on the same functional space as the optimization problem. This will
not result in the same levels of accuracy in comparison to an adjoint solved in a higher functional space but we show
that this approximation appears sufficient to steer the meshadaptivity. Furthermore, highly accurate adjoints in the early
stages of the optimization process will likely not justify the high cost-benefit ratio.

3.1 Finite element approximation and error estimation

The continuous first-order necessary conditions for optimality in (4) must be approximated in practice. Because of our in-
terest in error estimation and adaptive mesh refinement, we employ the adaptive finite element method [Ainsworth and Oden(2000)].
Let Vh ⊂ V be a finite element approximation space based on conforming elements of fixed polynomial degreer ≥ 1.
The mesh is only required to be locally quasi-uniform [Ainsworth and Oden(2000)]. The finite element approximation
of the optimality conditions is then: find(U,Φ, P ) ∈ Vh × Vh ×Π:

A(U,P )(v) = 0, v ∈ Vh
Fu(U,P )(v) + Au(U,P )(v,Φ) = 0, v ∈ Vh

Fp(U,P ) + Ap(U,P )(Φ) = 0

(7)

We are interested in the error of the objective function

E(U,P ) ≡ F (u, p)− F (U,P ).

An a posteriori error estimate for this error was derived by Becker and Kapp [Becker and Kapp(1998)] which involves
the exact solution. For the case of a fixed finite-dimensionalparameter space, this estimate takes the form

E(U,P ) =
1

2
{A(U,P )(ε)

+Fu(U,P )(e) + Au(U,P )(e,Φ)

+Fp(U,P )(ξ) + Ap(U,P )(ξ,Φ)}+R3,

(8)

where the remainder termR3 is cubic with respect to the errors

e ≡ u− U, ε ≡ φ− Φ, ξ ≡ p− P. (9)

A lower order approximation can be defined by

E(U,P ) = A(U,P )(ε) +R2, (10)
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where the remainderR2 is only second order [Bangerth and Rannacher(2003)]. The form in (10) avoids approximating
the state and inversion operators and thereby significantlysimplifies the implementation in large production finite ele-
ment codes. Consequently, a loss in accuracy is realized as aresult of the remainder term increasing from third to second
order (R3 → R2). The lower order error estimate requires the exact solution to the adjoint equation:

Au(u, p)(v, φ) = −Fu(u, p)(v), v ∈ V. (11)

Since the exact solution is unknown, this problem is furtherapproximated by replacing the exact stateu and parameter
p by the approximate solutionU and parameterP : find φ̂ ∈ V :

Au(U,P )(v, φ̂) = −Fu(U,P )(v), v ∈ V. (12)

3.2 Approximations to the adjoint problem

In order to derive a computable error estimate we need to approximate the continuous adjoint problem in (12). The
simplest way to do this is to use the same approximation spaceVh and solve forΦ ∈ Vh

Au(U,P )(v,Φ) = −Fu(U,P )(v), v ∈ Vh. (13)

The solution to this problem is exactly the same as the adjoint component of the solution to the full discrete optimality
problem (7), which is potentially convenient since it has already been computed. However, because of the Galerkin
orthogonality, this would give a zero approximation of the error if substituted forφ in (10). The ideal approach to
calculate the solutionφ is to approximate (12) using a higher order spatial approximation spacẽVh. This can be done,
for example, by increasing the polynomial degree of the finite element spaceVh or by refining the underlying mesh.
Then the adjoint weights are approximated using the higher order approximatioñΦ ∈ Ṽh

ε ≈ Φ̃− Φ

This approach has the advantages of typically being quite accurate, due to the use of a higher order method. It can also
be expensive, due to the higher order adjoint solve, and verydifficult to implement in existing production finite element
codes.

Various other less expensive approaches have been proposedusing postprocessing of the approximate solution
(U,Φ, P ). In these cases, the error weights are approximated using some smoothing operators that only depend on the
computed approximate solution and the problem data. For self-adjoint differential operators, Paraschivoiu et al. [Paraschivoiu et al(1997)Paraschi
used local Neumann problems on refined patches of elements togenerate upper and lower bounds on the error in linear
functionals. This work was improved by Prudhomme and Oden [Prudhomme and Oden(1999)], who used techniques
from generating upper and lower bounds on the error in the energy norm to derive sharper bounds on the error in linear
functionals. For more general partial differential equations, Becker and Rannacher [Becker and Rannacher(1996)] pro-
posed an interpolation method for estimating first and second order derivatives of the adjoint solution computed on the
same finite element mesh. Several options for approximatingthe adjoint were explored by Larsson et al. [Larsson et al(2002)Larsson, Hansbo, and
including approximating the adjointerror using a hierarchical higher order approximation with the lower order basis
functions removed. They also considered approximations ofthe adjoint error on local patches of elements, as was later
done by Carnes and Carey [Carnes and Carey(2008)].

In this work, we approximate the adjoint weights using recovery procedures. Value and gradient recovery have been
used in finite elements for some time, beginning with the key work of Zienkiewicz et al. [Zienkiewicz and Zhu(1987)]
and more recently by Wiberg et al. [Wiberg and Li(1994)] and Ovall [Ovall(2007)]. We refer the reader to the book by
Ainsworth and Oden for a more detailed review [Ainsworth andOden(2000)]. The value recovery is based on a least
squares polynomial fit of nodal values on a patch of elements around an element. For elements of degree greater than
one, this method generally produces a higher order field approximation on the element. However, for linear elements,
the accuracy may not be greatly improved. Thus, this approach may be sub-optimal when terms involving the value of
the adjoint error(φ− φh) are large.

Our choice of using a recovery method was primarily motivated by computational efficiency of solving the adjoint on
the same mesh plus inexpensive post-processing. In addition our approach was convenient to implement in our produc-
tion finite element code. The approach uses local operators defined onVh that can recover higher order approximations
of functions inVh. The form of the adjoint weights can be expressed as:

φ− Φ ≈ rh(Φ)− Φ, ∇(φ− Φ) ≈ Rh(∇Φ)−∇Φ

We employ a standard approach based on patches of elements around a vertex node (See Figure 1). We sample the finite
element gradients on the elements and fit a polynomial through the sampled values using a least squares fit. For the case
of linear finite elements in 2D, the sampling points are the element midpoints and the polynomial basis is{1, x, y}. Then
the nodal values are used to define a global recovered gradient in V 2

h .
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Fig. 1 Sampling points for value and gradient recovery for linear finite elements

4 ALGORITHMS FOR OPTIMIZATION UNDER ADAPTIVITY

To perform optimization under adaptive error control the choice of the algorithm is partially dictated by the form of the
coupling between the application code and the optimizer. Inthe decoupled “black box” approach, the optimization loop
launches the application code whenever the state and parameter sensitivities need to be evaluated. Adaptivity can be done
by the application code, but the adapted mesh and state cannot be re-used for the next optimization step. Furthermore,
our experience has shown that in this case the optimizer has difficulty reaching a stable minimum when the mesh is
changing due to adaptivity.

Another possibility is to adapt the mesh at every step and thereby converging the mesh as part of the optimiza-
tion loop. Bangerth [Bangerth(2008)] demonstrates this aproach for problems with distributed parameters. The forward
simulator, optimization algorithm and the adaptivity mechanism are closely integrated. A SAND optimization imple-
mentation solves for feasibility and optimality simultaneously, providing the necessary access to all the linear objects
at any point of the forward prediction, optimization and adaptivy algorithms. Although our work also makes use of the
SAND optimization approach, we do not converge the mesh as part of the optimization loop. The primary reason for
not using this approach was because the goal of our implementation effort was to develop an interface sufficiently flex-
ible to accomodate off-the-shelve optimization librariesand other advanced numerical algorithms. Adaptivity at each
optimization iteration would have required optimization algorithms tailored to handle this and shifted the focus of our
development efforts.

In our approach, adaptivity is performed as an outer loop around an inner optimization loop, which allows a fixed
(adapted) mesh to be used for optimization. Our integrated optimization solution strategy provides, after each outer loop
iteration step, the necessary access to reuse various linear objects such as the reduced Hessian, state and optimization
variables. Instead of recalculating with a prescribed initial guess, the optimization now starts from a much improved
starting point after each outer loop iteration. We show in section 6 the computational improvement of this reuse mech-
anism. The stopping criteria for the outer loop should ideally be set by comparing the error estimate for the objective
function with a prescribed tolerance. Because of the uncertain quality of the error estimates that we compute, we instead
use a fixed number of refinement levels. Algorithm 1 outlines our implementation strategy.

Algorithm 1 Optimization under adaptive error control
Given an initial parameter valuep0 and stateU0

Set initial HessianH0 = I
for k = 1 to number of adaption levelsn do

while optimization not convergeddo
calculate adjoint sensitivities
perform step computation
globalize with line search
update optimization and state variables(Uk, pk)

end while
Compute the adjoint based error estimate forF (Uk, pk)
Adapt the mesh using error indicators
Prolong state from old mesh to newUk+1 = Uk

Update ParametersPk+1 = Pk

Update HessianHk+1 = Hk

end for
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In order to make use of the error estimator in adaptivity, a strategy is needed to decide which elements to re-
fine/coarsen. The inputs are the element error contributions, which are the restriction of the integrals in the estimate(see
equation 10) to a mesh elementK. These element indicators, denotedηK , can be either positive or negative. This con-
founds most adaptive strategies, which are based on refiningelements with large indicators, and coarsening those with
small indicators.

Our approach to adaptivity is to compute two basic statistics on the element error indicators: the meanµ and standard
deviationσ. The idea behind the adaptivity is that refinement should concentrate on thoseηK that are outliers. This is
defined formally as: mark an elementK for refinement if

|ηK − µ| > θR σ, (14)

whereθR is a free parameter. Typically we have usedθR from 0.5 to 1.5, with decreasingθR yields more adaptivity.
In the study we keepθR fixed at 0.5. We do not apply any coarsening, since we are only concerned with stationary
problems. However, the above approach can be extended as: mark an elementK for coarsening if

|ηK − µ| < θC σ, (15)

with θC a free parameter.

5 IMPLEMENTATION

The implementation of analysis algorithms into productionsimulation codes poses numerous challenges. First, produc-
tion codes historically are designed to perform only forward predictions. The linear algebra representation is typically
designed with this in mind and accessing non-standard numerical objects requires extensive refactoring. For example in
the case of optimization algorithms, the adjoint calculation requires a transpose of the Jacobian which is not a standard
operation, especially in the parallel context (higher order adjoint solves for error estimators are even more difficultto im-
plement). Furthermore, the terms in the general error estimate formula (8) are not included in typical production codes.
Even the simpler error expression in (10) requires the integration of the finite element residual against special adjoint
weight functions. This can be done using the standard element assembly process, but requires the code to support swap-
ping the nodal test functions with a single adjoint weight function for every possible term in the residual. Second, each
production code presents unique implementation styles with different concrete linear algebra infrastructures. Thusfor
legacy production codes, implementing analysis algorithms directly in the code would duplicate implementation efforts.
This could be simplified if a general purpose, standardized interface were to be adopted by all the legacy codes. Third,
such specialty interfaces are difficult to maintain becausethe advancement of production codes is centered around the
forward prediction mode and the responsibility for maintaining these specialty interfaces may become quickly outdated
as the development of the forward simulation code advances and changes. Our proposed solution for all the above men-
tioned issues is to design an interface sufficiently flexibleand extensible to accommodate different underlying linear
algebra infrastructures and to enable a range of numerical algorithms of interest to the developers.

To this end, we have developed an interface that is sufficiently general to provide a conduit from a range of advanced
numerical algorithms (ANAs) to different underlying linear algebra infrastructures. Underlying the design is the premise
that the interface is stateless, lightweight, and extensible. Our stateless interface does not maintain temporary copies to
any vector or matrix objects but instead manipulates pointers. The interface is designed so that any input and output
variables can be easily added or deleted to accomodate any algorithm. This is a critical feature because the interface
ideally should not only be used in specialized ANAs (such as optimization) but also algorithms central to the forward
simulator (i.e. nonlinear solver, time integration, etc).

5.1 Model Evaluator

The Thyra package in Trilinos [Heroux(2009)] contains a setof interfaces and supporting code that define basic inter-
operability mechanisms between different types of numerical software. The foundation of all of these interfaces are the
mathematical concepts of vectors, vector spaces, and linear operators, as well as interfaces to various linear and nonlinear
solvers. To address the communication from ANA to concrete application, the ModelEvaluator class is introduced (Fig
2). This design is based on the ’decorator’ design pattern which makes it possible to extend (decorate) the functionality
of a class at run time. This works by adding a new decorator class that wraps the original class in addition to combining
component pointers as field to the decorator class, initializing these pointers in the component constructor, and redirect-
ing component methods to the pointers. For additional details see [Gamma et al(1994)Gamma, Helm, Johnson, and Vlissides].
The essence of the ModelEvaluator class lies in the definition of input, output and evaluation methods from which a va-
riety of input and output parameters can be defined for different algorithms.
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Fig. 2 The Trilinos Thyra::Model Evaluator UML class diagram. Trilinos::Epetra is the underlying vector and matrix parallelclass. The
ModelEvaluator class is part of the Trilinos::Thyra package which is a facility to manage and support interfaces for numerical software.

5.2 Legacy Production Simulator

The forward simulation models were implemented in a computational mechanics framework called Sierra in which the
Aria package is responsible for the thermal and fluid capabilities. The Sierra framework (see Section 7 in [Biegler et al(2003)Biegler, Ghattas, Heink
was designed to provide common finite element services and thereby allow for an efficient concentration on the physics
development. Parallelism, mesh adaptivity, contact and multiphysics management components are among the many
complex features that are available within this environment. However, the framework was designed primarily to enable
the forward prediction mode which consequently creates significant implementation challenges to incorporate analysis
algorithms. Aria is capable of first and second order finite elements on locally refined (h-adaptive) meshes. The sup-
ported physics used were the incompressible flow and transport modules. The adjoint was implemented and solved by
making use of the solver capabilities from the Trilinos framework. In addition to optimization and error estimation, the
Thyra::ModelEvaluator interface will also enable advanced time integration, and uncertainty quantification in the near
future.

6 NUMERICAL RESULTS

Optimization and adaptivity algorithms present significant implementation challenges but, as this section will show,
these disadvantages are offset by impressive accuracy and performance improvements. The embedded nature of SAND
methods enable adjoint based error estimation to drive adaptivity which further improves the overall computational effi-
ciency in addition to improving the accuracy of both the forward and the optimization problems. In this numerical results
section, our goal is to demonstrate these algorithms on non-trivial examples within a production type simulation code.
We target two and three dimensional datasets that describe flow and transport dynamics for a contact reactor tank used in
water treatment. Navier Stokes and convection-diffusion-reaction partial differential equations are implemented in a par-
allel finite element framework with embedded optimization under adaptivity. First, the recovery method will be verified
by comparing adjoint calculations using higher order elements to the recovery method with simple convection-diffusion
dynamics. Second, the performance of SAND versus NAND optimization interfaces will be compared, followed by the
performance and accuracy of these interfaces combined withuniform (combined with a NAND interface) and adaptive
(combined with a SAND interface) refinement strategies. A two-dimensional flow and transport problem forms the basis
for our numerical experiments. Third and finally, a three dimensional dataset for a subsection of the contact reactor tank
will demonstrate our implementation in parallel, in addition to a demonstration of the reuse of certain linear algebra
objects to help accelerate the convergence of the optimization problem.
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6.1 Prototype Two Dimensional Problem with Solution Verification

We compare the accuracy of our recovery-based approach to a higher order adjoint solve on a simple transport problem
in which the error is calculated using a known analytical solution. The model represents stationary transport of a species
by convection-diffusion as follows:

u · ∇c− ǫ∆c = f in Ω ≡ (0, 2)× (0, 1),

c = 0 on Γin ≡ {x = 0},

c = 1 on Γout ≡ {x = 2},

−ǫ∇c · n = 0 on Γo ≡ {y = 0, 1}

(16)

The velocity field is chosen to be parabolic withu ≡ (4y(1−y), 0). The dimensionless parameterǫ is equal to the inverse
of the Peclet number (Pe) and is set to 0.01 to prevent stability problems from highly convective dominated dynamics,
which would require some form of stabilization. Although stabilization is available in the SIERRA framework we elected
to use mild convective transport conditions instead of complicating our implementation with a stabilized formulation.
The infinite dimensional problem is approximated using bilinear basis functions on quadrilateral elements.

Using methods of manufactured solution [Roache(1998),?] the source termf is chosen so that the exact solution is
given by

u(x, y) =
1− exp((1 + x(x− 2)y2(1− y)2)x/ǫ)

1− exp(2/ǫ)

The response functionJ is defined to be the average value of the species across the entire domain:

J(c) ≡
1

|Ω|

∫

Ω

c dx.

We employ two metrics to compare the performance of the errorestimators. The first is the standard effectivity
index, which is defined to be the ratio of the error estimator to the exact error. Ideally this number should be close to
one. The second is the error reduction under adaptivity, when compared to uniform mesh refinement. In Figure 3(a) we
plot the effectivity ratio for both the recovery method (denoted as Q1R) and the higher order approach with bi-quadratic
elements (denoted as Q2) under uniform and adaptive refinement. For both the recovery and higher order adjoint the
residuals associated with surface flux boundary conditionscan be neglected although in general these weighted residual
contributions should be included.

For uniform refinement, the Q2 estimator effectivity tends to about 1.02, while the Q1R estimator only tends approx-
imately to the value of about -5.3. When adaptivity is used, the effectivity of both the Q1R and Q2 estimators becomes
more volatile because the meshes are much more irregular. However, the Q2 estimator eventually stabilizes, while the
Q1R estimator still appears to oscillate on the finest adaptive meshes. From this comparison, the Q1R estimator does not
appear to achieve reasonable effectivity values whereas the Q2 estimator eventually settles on more stable quantities.
However, in Figure 3(b) the error reduction from the Q1R is significantly better than uniform refinement and provides
equal error reduction as the Q2 estimator. Moreover, the error reduction from the Q1R estimator is more monotone
than that obtained from the Q2 estimator. We conclude that the Q1R estimator can drive adaptivity although additional
work is required to achieve appropriate effectivity values. Accordingly in our numerical experiments, the number of
refinement levels is set a priori and not dynamically determined with an effectivity tolerance.

6.2 Application to a Model for Transport in a Contact Tank Reactor

Our recovery approach efficiently calculates error estimators using the optimization adjoint. To further demonstratethis
capability on a relatively complex problem, we select an appropriate optimization problem constrained by convection-
diffusion-reaction transport of a species in a contact tankreactor, which is used in water treatment. In this section the
details of the contact problem are described and in subsequent sections this dataset will be used to perform numerical
experiments. Wang et al. [Wang and Falconer(1998)] developed a two dimensional finite difference model of the flow
and transport in order to investigate transport of a tracer.They focused primarily on resolving the fluid flow with different
turbulence models, concluding that solute transport predictions depends on the accuracy of the hydrodynamics. Although
in Wang’s study the flow is turbulent, we have reduced Reynolds number to the laminar case to allow for a more
simplified investigation of adaptivity and optimization for transport without the complications of turbulence. In addition
the chemical reactions which consume the reactant species were assumed to be first order and located on prescribed
surfaces.

For the contact tank, the boundaryΓ ≡ ∂Ω is divided into four parts: the inflowΓin, for which we specify a
parabolic fluid velocity and constant species concentration; the outflowΓout, for which we specify an open flow bound-
ary condition on the flow and a zero diffusive flux condition onthe species concentration; the surface reactionΓrxn,
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(a) (b)

Fig. 3 Results of the two dimensional verification problem. (a) Effectivity ratio for linear (Q1R) and quadratic (Q2) meshes, under uniform
and adaptive mesh refinement. (b) Exact error under uniform adaptive refinement for Q1R and Q2.

for which we specify a first order reaction for the species (the flow boundary condition is no slip); and the remaining
surfaceΓo for which we also specify a zero diffusive flux condition on the species and a no slip condition on the flow.

The mathematical model for the flow is defined by the stationary incompressible Navier Stokes equations along with
appropriate boundary conditions. Neglecting gravity, these can be formulated on a domainΩ as follows.

ρu · ∇u− µ∆u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = uin on Γin,

u = 0 on Γrxn ∪ Γo,

{−p I + µ (∇u+∇ut)} · n = µn · ∇ut on Γout.

(17)

The actual contact tank geometry consists of a flow domain with a single inlet and outlet. The domain has multiple turns
at right angles to form a serpentine structure. We plot the computed flow field for Re= 100 in Figure 4. The channel
was extended at the outlet (not shown) in order to allow the fluid to return to a near fully developed flow. The reaction
zones were located where the flow would be in closest proximity to the walls, in order to increase mass transport.

Because our interest is in the species transport, we only consider the flow as an auxiliary problem that provides
input to the transport through the fluid velocity. In order toavoid numerical errors from under-resolved flow, the flow
equations (17) were solved on a fine grid using finite element spaces consisting of quadratic velocities and continuous
linear pressures. This solution was then interpolated to the grids (both uniform and adaptive) where the following
transport equation was solved:

u · ∇c−D∆c = 0 in Ω,

c = cin on Γin,

−D∇c · n = 0 on Γo ∪ Γout,

−D∇c · n = k c on Γrxn.

(18)

The dominant dimensionless groups for equations (17)-(18)are the Reynolds number Re≡ ρU L
µ , the Peclet number

Pe≡ U L
D , and a third dimensionless group denoted byΠ ≡ k L

D . HereU is defined to be the maximum inlet velocity
uin, L is the width of the flow channel, andk is a reference surface reaction rate constant. In Table 1 we specify the
baseline parameters for the contact tank model.

The solution to the steady state transport problem defined by(18) can be expressed in abstract form as in (1). To
do this, we define the function spacesV cin ≡ {v ∈ H1(Ω) : v|Γin

= cin} andV ≡ {v ∈ H1(Ω) : v|Γin
= 0}. The

parameters are the set of reaction coefficientskj that are specified as constants on the set of surfaces that make upΓrxn.
The weak solution is obtained by findingc = c(k) ∈ V cin :

A(c, k)(v) = 0, v ∈ V. (19)
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Fig. 4 Two dimensional contact reactor tank with a flow field for Re= 100. Resolved flow was achieved by extensions at the outlet.

Name Value Units Description Name Value Units Description
Re 100 - Reynolds number µ 1.307e-3 [Pa− s] Viscosity
Pe 100 - Peclet number u0 6.330e-4 [m/s] Initial velocity
Π 3.160 - - cin 1.0 - Inlet concen.
L 0.21 [m] Length D 1.329e-6 [m2/s] Diffusivity
ρ 9.832e+2 [kg/m3] Density k 2.0e-5 [m/s] Reaction rate

Table 1 Nominal parameters for the contact tank model. Re is the Reynolds number, the Peclet number Pe represents a ratio of convection
and diffusion, and the dimensionless numberΠ represents the ratio of reaction and diffusion.

where the operatorA is defined by

A(c, k)(v) ≡ (u · ∇c, v) + (D∇c,∇v) + 〈k c, v〉Γrxn
, (20)

and we have used the usual notations for integral inner products(v, w) ≡
∫

Ω
vw dx and〈v, w〉Γ ≡

∫

Γ
vw ds.

By choosing appropriate finite dimensional spacesV cin
h

⊂ V cin and Vh ⊂ V for the trial and test functions,
respectively, we can define the Galerkin finite element approximation: findC = C(k) ∈ V cin

h
:

A(C, k)(v) = 0, v ∈ Vh. (21)

This abstract form provides a mapping to our algorithmic description in the preceding sections.

6.3 Optimization of Multiple Reaction Parameters to Fit a Prescribed Concentration on Reaction Surfaces

We compare the performance of the various optimization approaches described in Section 2, with the exception of the
full space approach. In addition, we compare the performance and accuracy of using either uniform or adaptive grids for
the reduced space SAND approach.

Our test problem contains six reaction parameters. The goalof the optimization problem is to solve an inverse
problem by reconciling the differences between prescribedand numerical concentration profiles. The area where the
comparison is made is along the total reaction surface, which in this example consists of six disjoint surfaces, each with
its own constant reaction rate (See Figure 5). The function that we fit is a linear function ofx that decreases along the
overall flow direction:

crxn(x) ≡ 1− x/4. (22)
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Fig. 5 Reaction sites are marked by the arrows in the two dimensional contact tank. These sites are represented as six disjoint sidesets of the
mesh

Since the length of the domain in thex-direction is two, this should result in a concentration profile from approximately
one to one half in thex-direction. The response function in this case is defined by

J(c) ≡
1

2

∫

Γrxn
|c− crxn|

2 dx. (23)

The solutions to the forward and adjoint problem are shown inFigure 6 for Re=Pe=100 and at the optimal parameter
values. The forward solution exhibits large gradients nearthe surfaces where reactions occur, as well as near the various
corner singularities. The adjoint has similar dynamics, only reversed, and exhibits plumes that flow off the reaction
surface in the upwind direction. These plumes mask the serpentine like features in the adjoint solution.

We compare the various optimization approaches – black box with finite difference sensitivities (BB-FD), black box
with analytic sensitivities (BB), and reduced space with analytic sensitivities (RS), using both uniform and adaptive
meshes. In all cases, the optimal parameters from the coarser mesh are used to initialize the optimization of the finer
mesh. However, only the RS approach is able to reuse the solution state and reduced space Hessian approximation as
discussed in Section 4.

In Table 2 we can see that there are significant differences inthe computational cost. Most expensive is the BB-FD

Total Computational Time [s]
DoFs J(c)× 1e3 % Error BB-FD BB RS
893 4.99553 147.6 1537 176 24
3217 2.61738 29.75 3646 461 41
12161 2.15112 6.64 9253 1283 264
47233 2.05408 1.83 – 12077 3481
186113 2.01717 – – – 73101

Table 2 Optimization results for the contact tank using six parameters and uniform meshes. The error is with respect to the 186113 Dof case
as the truth model. BB-FD represents the black box finite difference interface, BB represents the black box with analyticsensitivity case, and
RS represent the reduced space optimization approach. All our numerical results were performed on a Intel Xeon 2.66 GHz processor, running
RedHat Linux Enterprise release version 4.0.

approach. Here the cost can be more than an order of magnitudeslower than the BB approach. This is because of the
excessive number of function evaluations needed as well as the lower accuracy of the finite difference derivatives. The
BB approach was about a factor of four to six slower than the RSapproach. The latter method likely was faster than the
black box case with analytic sensitivities because of the improved algorithm which allows infeasible paths toward the
optimal parameters in addition to the elimination of repetitive pre and post-processing of the simulator. These results
are consistent with past studies that have demonstrated thecomputational advantages of SAND methods over black
box implementations [van Bloemen Waanders et al(2002)van Bloemen Waanders, Bartlett, Long, Boggs, and Salinger,
Akçelik et al(2005)Akçelik, Biros, Drăgănescu, Ghattas, Hill, and van Bloemen Waanders]. It is clear that avoiding the
repetition of converging the forward simulator provides the SAND approach with significant computational advantages.
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Fig. 6 Concentration solutions for the forward (top) and adjoint (bottom) for the multiple parameter case. The plumes off the reaction sites in
the adjoint solution mask the serpentine feature similar tothe forward solution.

However, another advantage to the SAND approaches is that adaptivity can be implemented. We compared the RS
approach for both uniform and adaptive grids, with adaptivity driven by the error estimator defined in Section 3. In
Table 3 we report the values and relative error of the objective function. We clearly see that with adaptivity, the accuracy
in the objective function is improved by orders of magnitudeover what is computable using uniform grids. Moreover,
optimization under adaptivity is more efficient. To reach approximately two percent relative error using uniform grids
takes about one hour (3481 s); using adaptivity, a similar accuracy can be obtained in about one to three minutes.

RS, Uniform Refine RS, Adaptive Refine
DoFs J(c)× 1e3 % Error Time [s] DoFs J(c)× 1e3 % Error Time [s]
893 4.99553 147.6 24 1425 3.79773 88.26 27
3217 2.61738 29.75 41 2896 2.35480 16.73 40
12161 2.15112 6.64 264 5020 2.09260 3.73 65
47233 2.05408 1.83 3481 10724 2.01748 0.012 172
186113 2.01717 - 73101 24166 2.02137 0.20 702

- - - - 34796 2.01767 0.02 2763
- - - - 119322 2.01726 – 14437

Table 3 Optimization results for the two dimensional contact tank using six parameters and adaptive meshes. The Reduced Space (RS) is used
to compare the accuracy and performance for uniform and adaptive mesh refinement. The error is with respect to the finest grid.

To appreciate the improvements in efficiency and accuracy, the relative error versus computational cost is plotted for
all the approaches – BB-FD, BB, and RS (both uniform and adaptive refinement) – on a single graph in Figure 7. Several
conclusions can be drawn: first, the restriction to uniform meshes results in a limiting slope (dashed line) for the error
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Fig. 7 Cost versus accuracy for the BB, BB-FD and RS (uniform and adaptive) strategies. The dashed line represents the limitingslope for
uniform refinement.

reduction (when plotted as log-log). This slope is a function of the smoothness of the exact forward and adjoint solutions,
which is reduced in this case because of the number of geometric singularities in the problem occurring at re-entrant
corners. Second, the slope is much better when adaptive refine is used, actually closer to the optimal second order slope
that is observed for problems with smooth solutions on uniform meshes. As a result, the adaptive approach can realize
levels of accuracy not practically obtainable using uniform meshes. The RS adaptive results exhibit an anomalously low
objective function error value at approximately 200 seconds. We believe this to be a result of the somewhat random
nature of the adaptivity process.

Two of the adaptive grids used for refinement levels four and six are shown in Figure 8. Adaptivity is concentrated
along the reaction surfaces and in regions where the adjointsolution plumes are located. No adaptivity occurs near the
outlet because the adjoint is approximately zero.

6.4 Large Scale Optimization of a 3D Contact Tank Model

Although a detailed three dimensional study is beyond the scope of this paper, the implementation of any algorithms
in our computational framework must be functional in multiple dimensions and operate in parallel. Therefore, in this
section our algorithms are demonstrated on a subsection of athree dimensional contact tank dataset (Figure 9) with an
increased number of inversion parameters (eighteen) solved in parallel using eight Intel Xeon 2.66 GHz processors. For
this 3D case, the optimization is performed to match a different constant constant value on the upper (0.9) and lower
(0.8) reaction surfaces. The solution concentration is plottedin Figure 9.

Our numerical experiments are limited to a comparison of uniform refinement and adjoint based adaptive refinement,
all within the reduced space SAND optimization context. As shown in Table 4, the adaptive refinement algorithm
achieves the same error as the uniform refinement, but with anorder of magnitude less number of degrees of freedom.
This translates then into more than an order of magnitude improvement in computational efficiency. It should be noted
that the total cost of the adjoint based error estimator using the recovery post-processing approach was generally less
than 10 percent of the total computational cost.

As a final calculation, a comparison was performed to assess the benefits of re-using the reduced Hessian matrix,
which in this problem is an18×18 dense matrix. When the reduced Hessian is not re-used, it is initialized as an identity
matrix. We see in Table 5 that even for uniform problems, computational cost savings of a single optimization solve
on the finest mesh can be as much as 60%. When adaptive refinement is used, the cost savings can be as high as 70%.
Since most of the computation is done on the finest grid, we conclude that re-use of objects such as the reduced Hessian,
in addition to the state, between levels of mesh refinement can significantly improve the efficiency of algorithms for
optimization under adaptivity.
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Fig. 8 Adaptive meshes used at optimal value of reaction rate parameters for 10,724 dofs (top) and 34,796 dofs (bottom)

RS, Uniform Refine RS, Adaptive Refine
DoFs J(c)× 1e3 % Error Time [s] DoFs J(c)× 1e3 % Error Time [s]
532 1.23231 56.43 18 532 1.23231 56.43 18
3367 3.12091 10.34 69 1260 2.74336 3.01 39
23725 3.06178 8.25 995 4473 2.97430 5.16 118
177625 2.92271 3.33 8441 15237 2.89203 2.25 364

- - - - 60047 2.84875 0.72 1587
- - - - 234159 2.82843 – 9812

Table 4 Optimization results for the 3D contact tank using 18 parameters using Reduced Space (RS) comparing both uniform and adaptive
refinement. Error are calculated with respect to the finest grid.

RS, Uniform Refine RS, Adaptive Refine
DoFs Re-use Iden DoFs Re-use Iden
550 26 26 550 26 26
3385 18 19 914 21 22
23743 26 30 2722 17 30
177643 12 31 9517 12 29

- - - 36098 9 29

Table 5 Comparison of iteration counts for both re-use of the reduced Hessian and initialization with an identity matrix for both uniform and
adaptive refinement

7 CONCLUSIONS

We have presented an approach for implementing goal-oriented adaptivity and optimization in a production finite ele-
ment code. The adjoint is central to both calculating an optimal solution and error estimation for mesh adaptivity. To
avoid finite element orthogonality, ideally the adjoint forestimating errors should be determined on a higher functional
space than the corresponding adjoint for sensitivity calculations. This poses more computational demands and therefore
we have developed a recovery process that allows the higher functional space adjoint to be approximated by polynomial
projection. This error indicator avoids additional adjoint calculations and was shown to be a viable tool for driving adap-
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Fig. 9 Three dimensional dataset for a subsection of the contact tank; 18 reaction sites are indicated by the colored squares (top). Concentration
profile is shown along the centerline (bottom).

tivity. Numerical experiments showed that effectivity could not be relied upon to terminate the adaptivity loop. However
future work is planned to investigate improvements.

The SAND optimization approach provides significant computational advantages over a black-box interface, in
addition to a convenient environment for adjoint based error estimator for adaptivity. The SAND optimization interface
was shown to be compatible with adaptivity using a nested approach. Moreover, reduced space optimization methods
can be accelerated through the re-use of the state and parameter variables, as well as the approximate reduced Hessian,
when transferred from coarse to fine grids.

We outlined the implementation requirements needed to enable optimization under adaptivity in production simula-
tion codes. This was accomplished through a ModelEvaluatorabstract interface from the Trilinos library. The ModelE-
valuator interface provides a conduit between advanced numerical algorithms and the underlying linear algebra native
to the simulator. Besides enabling off-the-shelve optimization libraries, other numerical algorithms can be efficiently
interfaced including those algorithms that are essential to the forward simulator, such as nonlinear solvers and time inte-
gration methods. Not only are duplicate implementation efforts avoided but this interface is more likely to be maintained
by those responsible for the forward simulation codes.

Finally, the effectiveness of our approach was demonstrated on a 2D convection-diffusion-reaction problem from
the water treatment community. It should be noted however that our methods and interfaces are generally applicable to
a wide variety of physics and production simulation codes. Furthermore, our numerical tests showed improved accuracy
in the optimization solution. Finally, we demonstrated ouralgorithms on a 3D parallel dataset with an increased number
of optimization parameters.

Acknowledgements We thank Roscoe Bartlett for designing the Model Evaluator interface in addition to supporting the implementation of
this interface into the Sierra::Aria production simulator.
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